Step of Proof: wellfounded_functionality_wrt_iff
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
wellfounded
functionality
wrt
iff
:
T1
,
T2
:Type,
r1
:(
T1
T1
),
r2
:(
T2
T2
).
(
T1
=
T2
)
(
x
,
y
:
T1
.
r1
(
x
,
y
)
r2
(
x
,
y
))
(WellFnd{i}(
T1
;
x
,
y
.
r1
(
x
,
y
))
WellFnd{i}(
T2
;
x
,
y
.
r2
(
x
,
y
)))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T1
: Type
C1:
2.
T2
: Type
C1:
3.
r1
:
T1
T1
C1:
4.
r2
:
T2
T2
C1:
5.
T1
=
T2
C1:
6.
x
,
y
:
T1
.
r1
(
x
,
y
)
r2
(
x
,
y
)
C1:
WellFnd{i}(
T1
;
x
,
y
.
r1
(
x
,
y
))
WellFnd{i}(
T2
;
x
,
y
.
r2
(
x
,
y
))
C
.
Definitions
P
Q
,
P
Q
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
iff
wf
origin